代码详解:构建一个简单的Keras+深度学习REST API( 八 )

# ensure an image was properly uploaded to our endpoint

if flask.request.method == "POST":

if flask.request.files.get("image"):

# read the image in PIL format

image = flask.request.files["image"
.read()

image = Image.open(io.BytesIO(image))

# preprocess the image and prepare it for classification

image = prepare_image(image target=(224 224))

# classify the input image and then initialize the list

# of predictions to return to the client

preds = model.predict(image)

results = imagenet_utils.decode_predictions(preds)

推荐阅读