人工智能颠覆传统计算方式:让内存更接近计算资源( 二 )

Lysaght说,如果能够让计算和内存更紧密地结合在一起,就意味着可以节省更多电力能源,因为在内存和计算之间就不需要往返太多次。“这会提高性能,因为数据处理直接发生在它所在的位置。”

▲美光认为,现有内存和存储技术(例如DRAM和3D NAND SSD)为人工智能架构提供了硬件,同时美光也在研究更新的技术(如内存处理器架构)以支持更多初创公司

在Lysaght看来,有很多不同的方法都可以打造出更好的架构。拿神经形态处理器举例,它在内部使用神经网络,并将内部核心数据分解为更多的较小颗粒。“因为要对大量的数据要进行处理,所以让更多的核心反复执行相对简单的操作是一种更好的解决方案,”Lysaght说。

最近,内存公司Crossbar与Gyrfalcon Technology、mtes Neural Networks(mtesNN)、RoboSensing等公司一起,打造了一个致力于提供加速、节能型人工智能平台的联盟——SCAiLE(用于边缘学习的SCABLE AI)。该联盟将结合先进的加速硬件、电阻式RAM(ReRAM)和优化神经网络,打造就绪的低功耗解决方案,使得整个过程无需进行监督学习。

推荐阅读