人工智能颠覆传统计算方式:让内存更接近计算资源( 四 )

Forrester Research的这项研究表明,有越来越多的企业将在公有云和边缘位置进行数据分析,从而在边缘完成更多的机器学习能力。有51%的受访者表示,他们正在公有云中运行分析,预计未来三年这一比例将增加到61%。此外,有44%的人已经在边缘设备中进行数据分析,预测到2021年这一比例将增长到53%。

Forrester基础设施和运营高级分析师Chris Gardner对于硬件的重要性感到惊讶,特别是存储和内存。他表示,一个非常重要的研究结果是,有大量工作是脱离了存储在内存本身进行的。但值得注意的是,这取决于你的需求是什么。根据Gardner的说法,训练模型需要大量的内存和存储空间。除外之外,你根本不需要任何东西。

人工智能颠覆传统计算方式:让内存更接近计算资源

▲Crossbar最近成立了一个打造人工智能平台的联盟,提供针对人工智能应用的内存产品,例如带有嵌入式ReRAM的P系列MCU

Gardner说,在完美的情况下,企业希望拥有一个数百GB的RAM大型环境。但实际上,他们不得不自己构建或者付费让供应商来实现,而且这需要的是硬件方面的转变。“我们需要更多以内存为中心的架构,让计算围绕内存以及存储来进行,而不是让计算本身成为中心。“这并不是说当前的计算架构很糟糕,但这可能并不是做人工智能和机器学习最有效的方式。”Gardner表示。

推荐阅读