原创<br> 8种优秀预训练模型大盘点,NLP应用so easy!( 七 )

原创<br> 8种优秀预训练模型大盘点,NLP应用so easy!

BERT是Bidirectional Encoder Representations(双向编码器表征)的简称。这个模型可以同时考虑一个词的两侧(左侧和右侧)上下文,而以前的所有模型每次都是只考虑词的单侧(左侧或右侧)上下文。这种双向考虑有助于模型更好地理解单词的上下文。此外,BERT可以进行多任务学习,也就是说,它可以同时执行不同的NLP任务。

BERT是首个无监督的、深度双向预训练NLP模型,仅使用纯文本语料库进行训练。

在发布时,谷歌称BERT进行了11个自然语言处理(NLP)任务,并产生高水平的结果,这一壮举意义深远!你可以在短短几个小时内(在单个GPU上)使用BERT训练好自己的NLP模型(例如问答系统)。

想获得更多有关BERT的资源,请参阅:

谷歌官方博文

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

推荐阅读