即插即用新卷积:提升CNN性能、速度翻倍( 六 )

即插即用新卷积:提升CNN性能、速度翻倍

图8/17

图 5. OctConv 的卷积核

即插即用新卷积:提升CNN性能、速度翻倍

图9/17

图 3:采用卷积降采样后的特征图,在进一步上采样后,将导致整体向右下方漂移,影响特征融合。

这里,有一点很有意思。研究人员指出,通过卷积降采样会导致特征图无法准确对齐。并推荐使用池化操作来进行降采样。

实验评估

在本节中,研究人员验证了提出的 Octave 卷积对于 2D 和 3D 网络的效能和效率。研究人员首先展示了 ImageNet 上图像分类的控制变量研究,然后将其与当前最优的方法进行了比较。之后,研究人员使用 Kinetics-400 和 Kinetics-600 数据集,展示了提出的 OctConv 也适用于 3D CNN。每一类别 / 块的最佳结果在论文中以粗体字显示。

推荐阅读