人脸识别新突破,就算遮住半张脸也能100%被识别( 四 )

VGG-Face模型

目前最流行和广泛应用于人脸识别的是VGGF模型,由Oxford Visual Geometry Group开发。该模型在一个超过2.6 K个体的2.6M面部图像的巨大数据集上进行训练。

在VGGF中,其中13层是卷积网络,其他是ReLU、pooling的混合体,最后一层是softmax。

人脸识别新突破,就算遮住半张脸也能100%被识别

13个卷积层

为了确定VGGF模型中用于面部特征提取的最佳层,通常必须进行一些试验和错误实验。在本实验中,团队发现最好的结果来自第34层。值得注意的是,该层是完全连接的层,位于神经网络的末端,这意味着提取的特征代表代表了全脸。

特征分类:为什么使用余弦相似度和线性SVM

本次实验中,研究团队使用了余弦相似度(CS)和线性SVM分类器。做出这样的选择基于两个原因:首先,团队测试了其他分类器后发现CS和线性SVM的效果最好;其次,通过实验和分析,团队发现这两个分类器能够更准确地分离数据。

推荐阅读