使用 K8S 几年后,这些技术专家有话要说( 九 )

其次是资源需要被更高效地管理和利用,这也是 K8S 赋予的能力。如果是个人或者团队分配机器,利用率是很低的,包括自己的业务可能需要去协商可以用哪些机器,这个流程非常拖沓。同时,也存在资源竞争的问题,比如两个人都想用 GPU,一台虚拟化的机器只有一张卡,怎么分配?还有就是个人很难管理这么大量的机器。

最后,平台的通用化分析能力,可以开放给算法同学,包括算法的监控,硬件和业务的监控。另外,在日志处理方面,通过日志去判断一个 AI 是不是已经达到了能力上的需求,这里会有一些指标,包括模型方面的要求;还可以做日常定位的工作;在数据管理方面,训练数据和模型都需要做管理。

使用 K8S 几年后,这些技术专家有话要说

图7/15

虎牙直播高级开发工程师 王玉君

因为虎牙直播业务方面的特性,它有很多业务是部署在边缘节点,因为涉及到主播推流等,对网络质量要求比较高,也在尝试边缘机房的建设。目前,虎牙有一些测试的机房,预计会在今年 Q4 完成生产环境的建设。这是目前的现状:虎牙现在 Node 机房有 700+ 物理机,Pod 有 7000 多,应用程序在 350+,这些数据还在不断增加。有时候有一些赛事需要紧急扩容,一天就会扩容 100 台,虎牙会根据实际的业务情况来增减。

推荐阅读