《未来学徒》:怎么让人工智能记住并且在人群中认出你?( 二 )

这项技术虽然在1997年就被提出,但随着整体AI技术环境的成熟和改进方式的完善,LSTM在近段时间开始火爆了起来。包括谷歌翻译等产品中都开始应用这项技术。

今天就来科普下这个“让人工智能在人群中认出你”的技术。虽然LSTM的技术进程推进比不上很多算法与精神网络,但它展示的未来可能与人文内涵却带来更加丰富的意味。

从呱呱坠地到情窦初开:LSTM解决了什么问题

想要了解LSTM,必须先要弄懂另一个名词:循环神经网络(RNN)。很多机器学习算法与应用都会用到RNN,主要就是因为它解决了机器学习中一个最重要的问题:记忆。

所谓循环神经网络,简单来说是在传统的神经网络上加入了”循环“功能。最开始的神经网络,每层计算之间的结果是不相联系的,这样留下的问题是机器学习系统没有记忆能力。

而RNN的根本出发点,就是将不同层精神网络之间的输入、运算与输出进行联系。让神经网络产生记忆能力。

赋予机器学习记忆能力,有很多直接使用场景。比如说在机器翻译当中,使用RNN技术可以带来联系上下文的能力,让翻译结果准确贴合语境。

推荐阅读