《未来学徒》:怎么让人工智能记住并且在人群中认出你?( 五 )

对于“机器学习+文本”来说,理解、翻译和新的文本生成永远是捆在一起的铁三角。LSTM可以帮助理解上下文这种人类特有的表达方式,当然也有助于AI学习从人类文本中梳理逻辑和脉络。而以此为契机反向生成有语境、有逻辑、有伏笔的新文本,也是LSTM最直接的应用场景之一。

同样,上下文不仅是在文本当中才有。比如在视频当中,就也会出现前后故事联系的情况,甚至更复杂一点出现通过图像来进行的上下文联系。比如一件衣服穿在不同人物身上的意义;反复出现的关键道具;甚至天气对剧情的推动作用。

目前已经有通过LSTM变体技术来解读电视剧的实验。而更广阔的应用空间,是通过LSTM来对监控视频进行记忆推理。比如在全市的视频监控数据中寻找被偷钱包的下落等等,说不定都很快可以实现。

同样,在NLP自然语言处理当中,LSTM也可以有巨大的应用价值。比如选择记忆人的语言习惯、口音、发音方式等等,可以帮助AI理解人类真实语言,降低对语言准确性的要求。另外通过LSTM也可以帮助AI来理解人类的大段语音命令,从而让人类对AI下达负责命令成为可能。

推荐阅读