机器人有望跨越仿真—现实鸿沟( 三 )

日前,苏黎世联邦理工学院机器人系统实验室团队在《科学·机器人学》上发表最新论文,给出了新证据表明,运用数据驱动法设计的机器人软件,有很大希望解决机器人学和人工智能研究长期面临的巨大难题——仿真与现实之间的差距。

团队演示的方法是将经典控制论与机器学习技术相结合。他们首先设计了一个四足机器人的传统数学模型,并给机器人起名“ANYmal”。接下来,再从引导机器人四肢运动的致动器中收集数据,数据输入多个人工智能神经网络系统,从而建立了第二个模型。

这个机器学习模型,就可以自动预测“AMYmal”机器人的肢体运动。经过训练的神经网络,只要插入第一个模型中,就可以在电脑上仿真运行这个混合模型。

团队发现这种利用数据驱动法设计的软件,大大提高了机器人的运动技能——它速度更快,动作也更精准。而且先将运动策略在仿真器中优化,再转入机器人体内在物理世界进行测试,最后机器人的表现,竟然和仿真表现一样好。

混合模型是变革的第一步

这一成就,被认为是机器人及人工智能的一项重要突破,其预示着,曾经不可逾越的仿真与现实之间的差距正在被消弭。

推荐阅读