代码详解:轻巧!低廉!为自动驾驶汽车实施端到端学习( 五 )

\n \n

def weight_variable(shape):

\n

initial = tf.truncated_normal(shape stddev=0.1)

\n

return tf.Variable(initial)

\n \n

def bias_variable(shape):

\n

initial = tf.constant(0.1 shape=shape)

\n

return tf.Variable(initial)

\n \n

def conv2d(x W stride):

\n

return tf.nn.conv2d(x W strides=[1 stride stride 1
padding='VALID')

\n \n

x = tf.placeholder(tf.float32 shape=[None 66 200 3
)

\n

y_ = tf.placeholder(tf.float32 shape=[None 1
)

\n \n

x_image = x

\n \n

#first convolutional layer

\n

W_conv1 = weight_variable([5 5 3 24

推荐阅读