2019全球工业智能峰会 | 大咖畅聊工业AI前沿技术:增强人,取代人?( 六 )

不过,目前基于大数据的深度学习还很难应用于制造流程:多尺度和多元信息依然依赖人工获取;预报模型难以建立,预测依赖人工;决策和控制过程的集成也很困难。

人工智能技术依然不足以支撑机器状态的判断,无法完全实现工况的预测和追溯。以AlphaGo为例,它之所以能强于人,是因为围棋有固定的规则。通过博弈建立精确的决策模型,就能一直训练到打败人类,也不用考虑能耗。

但是工业过程的决策截然不同,工况没有确定的决策和规则。工业过程也无法通过反复试错去建立模型,更何况工业过程的决策本身是多目标的。所以人工智能技术更容易解决大数据量下的小任务,但是工业决策却是小数据量下的复杂任务。

所以,人工智能在工业流程被寄望能实现的工作有三个。首先是对工况多元化信息的感知和认知;其次是能够协同经营层、生产层和运行层的决策;最后是以企业综合生产指标优化为目标,自动协同控制装备的控制系统。

对应人工智能在工业流程上有望完成的工作,柴教授认为仍有五个关键技术亟待解决:

推荐阅读