当推荐遇到社交:美图的推荐算法设计优化实践( 二 )

推荐算法的技术挑战

目前,美图公司旗下拥有多款社交产品,比如美图秀秀社区、美拍短视频社区等。针对这几款社交产品,不管在内容上还是产品背景上都有着自己的特点。比如美图秀秀从工具向社区转型,如何让用户进行内容消费并且产生持续消费成了我们需要重点考虑的问题。而对于美拍,用户本身有很强的内容消费属性,在留存的基础上如何吸引更多的用户是当前主要的考虑点。

针对多个不同形态的社交产品,推荐算法存在以下三个方面的挑战:

场景多,人力少:多款社交化产品合计十余个推荐场景,在当前的人力下,工作量是比较艰巨的;

场景、用户差异大:不同场景下,用户的消费习惯和使用意图,以及内容的属性存在比较大的差异,比如,美图秀秀社区以图文为主,美拍以短视频为主,导致不同场景下的模型不能简单复用;

产品、目标迭代快:用户的生活习惯不是一成不变的,我们的社交产品也时刻处在不同的发展阶段,需要根据用户的诉求,以及我们产品的发展需求及时调整推荐算法的优化目标。

推荐阅读