当推荐遇到社交:美图的推荐算法设计优化实践( 六 )
图2/7
MML 机器学习平台上线后,生产力得到了极大的释放。可以简单归纳为四个方面的收益:
开发效率的显著提升:平台上线前,算法同学需要同时开发样本拼接、模型训练、在线服务等多个模块的代码,平台上线后,算法同学可以专注于模型网络结构的设计;
模型迭代周期显著降低,模型调研的范畴大幅扩大:平台上线前,算法同学需要花费较多的精力在工程模块的开发上面,而且只能在几个固定的算法框架下进行一些有限的尝试。新框架不仅减少了算法同学的工程负担,同时因为框架的灵活性,使得算法的调研不再局限于几个固定的模式,模型迭代效率得到了极大的提升;
机器成本:新平台效率上的提升,也同样体现在机器资源的节约上面,在美拍热门排序上,接入新平台后,机器节约了一半;
经验沉淀:此前各个业务维护自己的模型代码,经验很难进行交流和复用。新平台很好地解决了这部分问题。
推荐阅读
- xyg|XYG晋级S组,还没来得及高兴就遇到了生涯最强的对手,大仙都愁眉苦脸
- 狼队|fly杀伤力有多强?张大仙一句评价太到位,幸好他们没遇到狼队
- 腕豪|LOL:排位选腕豪要BAN掉的五个英雄,遇到第二位,打野来了也没用
- 我的世界|《我的世界》领衔!推荐9款低配置、超耐玩的游戏神作
- 单机|游戏推荐:当前八款最热门的大型单机,都是不容错过的精品游戏
- 游戏推荐|11月游戏推荐,每年的游戏黄金月份,你还在不知道玩什么吗?
- 盖伦|金铲铲:上大分阵容推荐!赌狗阵容变异大嘴湮灭一切!
- 游戏推荐|Steam疯狂周三特惠游戏推荐,每一款都是特别好评!
- 光剑|DNF:鬼剑士武器幻化推荐!光剑首推“灯管”,流光系人气最高
- 传奇|璀璨复古传奇:法师遇到战士只能被按在地上摩擦?道士表示不服