当推荐遇到社交:美图的推荐算法设计优化实践( 三 )

为了解决上述挑战,我们分别从工具和算法两个方面入手。在工具上,去年我们开发了 MML 机器学习平台,提供从日志处理到模型在线服务的一站式解决方案。在算法上,我们在美图推荐场景上进行了良好的实践,针对目前存在的问题以及产品的需要,进行了很多有益的尝试,也获取到了一些经验。下面我将从工具和算法这两方面和大家分享下。

工具篇:MML 机器学习平台

MML,全称 Meitu Machine Learning Platform,是一站式机器学习服务平台,为用户提供从数据预处理,特征与样本生产,模型构建、训练与评估以及模型在线服务的全流程开发及部署支持。其平台架构图见图一。

当推荐遇到社交:美图的推荐算法设计优化实践

图1/7

图一 平台架构图

MML 机器学习平台包括三个主要模块:

Spark Feature:负责数据分析、特征工程,以及样本拼接。Spark Feature 基于 Spark SQL 进行开发,用户通过编写 SQL 以及配置样本拼接 JSON,即可实现特征以及样本生产的工作;

推荐阅读