当推荐遇到社交:美图的推荐算法设计优化实践( 七 )

算法篇:美图推荐排序实践

当推荐遇到社交:美图的推荐算法设计优化实践

图3/7

工具的价值落地到业务中,需要通过算法来实现。美图推荐排序算法大致可以分成四个阶段:第一个阶段是以 LR 为主的线性模型,组合大规模人工特征。第二个阶段发展成了以深度学习为主的非线性模型,以及少量的人工特征。再然后,为了减少人工特征工程的工作,我们开始调研以用户行为序列为主的原始特征,此时线上的主力模型是深度学习模型以及用户行为序列特征。最后一个阶段我们从单目标模型演进到了现在的多目标模型。排序模型四个阶段的演进可以归纳为模型、特征、优化目标三个方面的工作,下面我将和大家一一进行介绍。

美图推荐排序实践——模型演进

当推荐遇到社交:美图的推荐算法设计优化实践

图4/7

2018 年,我们上线了第一个基于何向南在 SIGIR 2017 发表的《Neural Factorization Machines for Sparse Predictive Analytics》改进的模型——NFM-v4。相比原论文,我们的主要改进点是通过一个线性变换,将变长稀疏的原始高维特征压缩到一个定长稠密的低维实数空间,从而屏蔽了模型在输入特征处理上的差异,可以将精力更多放在特征的挖掘上。

推荐阅读