用户|用户行为数据采集:常见埋点方案优劣势对比及选型建议( 三 )


3. 可视化埋点默认不采集数据,当数据分析人员通过设备连接用户行为分析工具的数据接入管理界面,在页面可视化定义需要采集的位点后下发采集请求,采集代码生效
优点:

  • 默认不上报数据,可视化圈选才按需触发埋点,节约存储和传输成本
  • 业务可视化圈选,埋点操作简单方便
缺点
  • 数据只在埋点圈选定义之后才有,历史数据无法回溯
  • 只能覆盖基本的点击、展示等用户行为,和业务强相关的属性信息采集困难
适用场景:
业务场景简单,如工具、应用类的产品,或者业务发展初期,产品快速迭代需求比精细化分析优先级更高,只需要分析简单的PV、UV
用户|用户行为数据采集:常见埋点方案优劣势对比及选型建议
文章插图
四、总结:如何选择埋点方案从几种埋点方案的对比可以发现,没有一种方案是可以完美解决所有问题的。因此在实际选择时,要结合业务形态(强交易流程类的还是内容娱乐消费类)、企业发展阶段(发展初期,产品迭代需求强于全面的精细化分析需求)多个方面因素综合考虑。
目前最常用的方案是代码埋点+全埋点组合使用。即用全埋点统计App(小程序)内用户基础的行为事件的PV/UV等数据,用代码埋点补充全埋点无法覆盖的场景,最终实现全面的精细化用户行为分析。在数据产品方面,配套的需要有埋点管理系统的支持,将埋点工作流转、埋点信息管理平台化。
#专栏作家#数据干饭人,微信号公众号:数据干饭人,人人都是产品经理专栏作家。专注数据中台产品领域,覆盖开发套件,数据资产与数据治理,BI与数据可视化,精准营销平台等数据产品。擅长大数据解决方案规划与产品方案设计。
本文原创发布于人人都是产品经理,未经作者许可,禁止转载。
【 用户|用户行为数据采集:常见埋点方案优劣势对比及选型建议】题图来自Unsplash,基于CC0协议

推荐阅读