范文|数据分析师,年终述职报告模板来了( 二 )
因此,可以从如何助力、如何赋能、如何辅助的角度来说,比如:
- 支撑类:为重大活动提供数据产品,为销售配备数据助手;
- 避险类:发现了异常问题,及时提醒业务解决;
- 增强类:提供模型/标签/产品,提升营销/销售/运营效果;
- 建议类:针对具体业务问题,提供解决建议。
避险和增强都能反映到业绩上,但避险的认可度是高于增强的。这就好比,把一个60分的学生教到90分很难,但指出来“就是那个傻逼考0分,拖全班后腿!”很容易。
指出业务没发现的问题,砍掉两个傻逼项目,ROI立马提升。实际上,这也是财务、审计等部门在领导面前邀功的常用手段(有意思的是,他们也是基于数据分析得出:“要控XX费用”的结论的)。
【 范文|数据分析师,年终述职报告模板来了】增强类本身难做,并且需要业务配合,比如精准营销,比如产品推荐,比如需求测试,虽然看起来是数据做了很多分析工作,但脱离运营的优惠券,其实效果没那么大。所以很容易扯皮。
至于建议类,鬼知道你写的建议人家听没有。即使听了,从一个建议到最终业务产出之间,还隔着十万八千里呢。费用、落地计划、系统开发、页面设计、商品选择、分工合作、客服对接,哪个环节都比一个建议要重要。
所以除非是有业务部门主动提出的:“这个建议很好”,一般情况下数据分析师不会主动炫耀所谓建议。
看到这又有同学说了:老师,我平时都从来不问数据有什么用,跑完数交了就完事了,到这我也不知道该怎么写。额,如果是这样的话,今年的考核就放弃吧。记得明年不要这么干了。
平时陈老师总是喋喋不休的,每个分析单元都会讲“这里可以这样结合业务,那里可以那样输出价值”就是备着这一天,以后看分析方法,不要光纠结数字怎么算,多看看落地场景哦。
还有同学说:老师,既然是要别的部门认可,人家不认咋办?本质上,解决问题的办法是正式立项,通过项目来解决问题。除了立项,还有个操作细节,就是多拍照,多发邮件。
比如业务领导邮件回复了:分析的很好!good,截图为证。比如双十一庆功会,大老板们在数据大屏前合影,good,拍照为证。比如在部门例会上做数据分享,good,拍照为证!总之平时多留证据,防止大家事后忘了提起裤子不认人。
四、绵里藏针型使用场景:求职or在大老板前露个脸。
范文:
- 我是大屏小能手,您看到的双十一大屏是我做的;
- 我是运营小助手,运营90%的需求都是我跑的;
- 我是活动小帮手,上次……
因为述职汇报很有可能是向上上级汇报(比如面对大部门总监或者CTO,COO)这里就有一个问题:如何最快速地让外行理解内行?
这是数据分析师从低级往高级发展必须解决的核心问题。因为在外人眼中你就是个弄个数字,不懂行的人,是很难理解做hadoop与打算盘有什么区别,因此很难与你感情共鸣,也就很难认可价值了。况且这是面对老板,老板们下属很多,老板们的时间都很少,所以必须在最短时间内把自己价值展现出来,和老板建立感情联系,标签就是最好用的工具。
推荐阅读
- 手机银行|漫谈金融产品数据可视化
- 商家|网购衣服7天内退货被拒,女子多次反映未果,商家晒出数据打脸
- 斐乐公司|网购平台销售数据可作为确定赔偿数额的依据
- 网易云音乐|「年度报告」刷屏,大数据真能代表你?
- 故障|中国电信网络故障频发!多地网友称行程码“数据查询异常”
- 大数据|中国电信:今日对大数据行程卡相关设备进行紧急扩容,异常已恢复
- 传播|金域医学最新回应:不存在“主动传播病毒”“丢失样本”“伪造数据”“瞒报数据”等情况
- 微信|企业微信最新数据:活跃用户数量为 1.8 亿
- 拼多多|难怪网购总比别人贵,原来是“大数据杀熟”了!4步快速解决
- 需求方|湖南大数据交易所建成投入试运营,是中部唯一