为AI寻找最佳人造突触:IBM电化学RAM亮相IEEE电子元件会议( 三 )

当我们想要读取突触的权重时,只需要在源极和漏极之间设置一个电压,然后感知产生的电流。IBM T.J. Watson 研究中心的 Jianshi Tang 说,ECRAM 的优点之一是:可以将当前的读路径和写路径分离开来。相变内存和电阻式内存必须让电流通过相同的路径才能设置和感知电导率。因此,读取 cell 单元可能会导致其电导率漂移。

(IBM 的一个独立研究小组也在 IEDM 上提出了解决这个漂移问题的方案。该团队提出的「投影」相变内存的 cell 单元包含一个可以在不让读取电流重写 cell 单元的情况下将其分流的结构。)

IBM 根据其测试版本的 cell 单元构建了一套测量标准,以测量由这样的一组单元组成的神经网络可以达到多高的准确率。他们在 MNIST 手写数字数据库上进行了测试,实验结果表明,这个神经网络达到了 96% 的准确率,与理想相差无几。他们最初想通过将 cell 单元能达到的电导率状态数增加一倍(达到 110)来提高准确度,但没有成功。Tang 说:「准确率并没有进一步提升,这让我们感到很惊讶」。

为AI寻找最佳人造突触:IBM电化学RAM亮相IEEE电子元件会议

推荐阅读