为AI寻找最佳人造突触:IBM电化学RAM亮相IEEE电子元件会议( 四 )

普渡大学的神经网络通过调整网络权重的反馈过程进行学习。当设备具有对称的电气特性时,其工作效果最好。

IBM 的团队发现,电导率在上升到峰值和下降之间的轻微不对称性会阻碍准确率的提升。完全对称意味着一次电流脉冲应该会改变一定数量的电导率,然后相反极性上相同的脉冲应该精确地将电导率返回到它的起点。与其他非易失性存储器相比,ECRAM 具有良好的对称性,但这还并不完美。

将这种不对称性降低一半,就能使神经网络达到可能的最佳准确率。根据他们的研究,通过调整设备的动态范围,将不对称性降低一半是绝对可行的。

IBM 团队还说明了,ECRAM 的导电通道可以缩小到 100 纳米宽的程度,而他们最初构建的导电通道有 60 微米宽。这样大小的 ECRAM 只需要千万亿分之一焦耳的能量就能改变其状态,这接近于人类神经元突触所消耗的能量。Tang 说:「当然,没有什么事请是完美的。使用 ECRAM 实现神经形态阵列仍然存在一些挑战」。

为AI寻找最佳人造突触:IBM电化学RAM亮相IEEE电子元件会议

推荐阅读