为AI寻找最佳人造突触:IBM电化学RAM亮相IEEE电子元件会议( 五 )

Peide Ye/普渡大学锗铁电纳米线晶体管可能具有适用于加速人工智能的特性。

ECRAM 并不是今年 IEDM 上在这个领域的唯一竞争者。由 IEEE Fellow Peide Ye 领导的普渡大学的研究小组小组提出了一种由锗纳米线和铁电材料制成的装置。铁电体对微小的电压有很强的极化反应。通过在晶体管的栅极上放置铁电,研究人员希望降低晶体管开关时的电压,从而降低功耗。但是你也可以在铁电体中储存信息。这是通过翻转部分铁电体的极性,从而改变在给定电压下通过晶体管的电流来实现的。这就是 Peide Ye 的团队所做的工作,他们制造出了一种能够产生超过 256 种电导状态的器件。更重要的是,它可以上调或下调那些具有合理对称性的电导态。一个利用该装置制作的处理 MNIST 手写数字任务的仿真网络的准确率达到了 88%。

然而,如果你的神经网络不需要执行学习任务,就不需要这种对称性和数百种电导状态。日常生活中,你可能想要人工智能系统做很多事情,比如让你的咖啡机在听到「唤醒命令」后启动,这些系统会学会在云端离线工作。完成这项工作所需的权重集合和神经连接将被加载到咖啡机内一个专用的低功耗芯片上。许多初创公司都在寻求为自己开辟一番天地,提供这些具有「推断」功能的芯片或背后的技术,其中一些公司依赖于使用内存单元来存储权重并执行关键的深度学习计算任务。例如,Syntiant、Mythic 以及 Anaflash 都为它们的芯片处理工作使用了嵌入式闪存。

推荐阅读