AI芯片混战,谁能挑战英伟达?(15)

我的观点是,英伟达毫无疑问拥有足够的专业知识和可用的芯片空间来进行创新,就像它在tensorcore上所做的那样。我和许多有趣的AI芯片初创公司谈过,但我最尊敬的那些公司告诉我,他们没有低估英伟达,也不认为他们被困在GPU的思维模式中。英伟达DLA和Xavier,一个ASIC和一个SOC,分别证明了英伟达可以创建各种各样的加速器,而不仅仅是GPU。因此,这些初创公司的CEO中有许多人决定不采用英伟达的方式,而是首先关注推理。

我认为英伟达在训练方面不会长期处于劣势。它的问题可能是芯片成本高,但在训练方面,客户会买单。此外,在推理方面,英伟达的Xavier是一款令人印象深刻的芯片。

寒武纪大爆发有益于可编程性

让我们回到寒武纪大爆发的观点。英伟达正确地指出,我们正处于算法研究和实验的早期阶段。一个在处理方面做得很好的ASIC(比如用于图像处理的卷积神经网络)可能(而且几乎肯定会)在处理方面做得很糟糕(例如,GAN、RNN或尚待发明的神经网络)。这里是GPU可编程性与英伟达的研究人员生态系统相结合的地方,如果英伟达能够解决即将出现的内存问题,那么GPU可以相当快地适应一种新的神经网络处理方式。通过使用NVLink创建一个由8个GPU和256 GB高带宽(HBM)内存组成的网状结构,英伟达已经以高昂的代价显著降低了内存容量问题。我们将不得不等待它的下一代GPU来了解它是否以及如何解决延迟和带宽问题,这些问题需要的内存大约是HBM的10倍。

推荐阅读