威盛亮相2019智能汽车视觉大会并发表主旨演讲(附演讲全文)( 七 )

既然初始样本数量必然是有限的,那么这个问题如何来解决呢?

数据的问题,就用数据来解决。

我们要通过持续学习,来解决数据不足的问题。整个数据引擎是一个不断迭代的过程,当我们在边缘端碰到不确定的情况,通过网络回传给服务端,服务端进行标注后,提供给训练流程,得到新的训练结果,进而部署到车辆边缘测。通过及时的更新,在时间域减少问题暴露的可能性,也从另一个方面降低了问题发生的比率。一个问题暴露10天和暴露1年的危害性是完全不同的。

另外一个问题就是视觉传感器本身的局限性,摄像头会受到外界环境的干扰,雨雪天气,光照情况,都会影响效果。

这时候,需要跳出原有的擅长的领域,引入更多的传感器来解决问题。而且这种引入不能是简单的叠加,必须深度融合才能真正带来准确度的提升。

比如如果视觉判断,前面一切正常,毫米波雷达判断,前面有障碍物,你如何去取舍?在信息判断的最后阶段已经没有足够的信息进行取舍。

环境条件对于基于视觉的辅助驾驶有着严重的影响,通过与不同的雷达,激光雷达,超声波或其它传感器协同工作,才能变得更高效。

推荐阅读