学习人工智能 100 天后,我得出 5 个结论( 五 )

重要的机器学习框架包括谷歌的 Tensorflow、微软的 ML.NET 和 PyTorch,它们为程序员添加了一个抽象层,甚至是额外的抽象层,比如位于 Tensorflow 之上的 Keras。

我们还可以将机器学习模型作为一种服务,或者通过创建自动化工具(如 AutoML 和 Auto-Keras)让机器学习变得更容易。

4

偏见是个大问题

机器学习模型中的偏见是个大问题。Amy Webb 的伟大著作《九巨头》(The Big Nine) 有很多章节都提到了这个问题。测试数据的全面性和多样性是非常重要的,但它们也是文明目前最缺的东西。

学习人工智能 100 天后,我得出 5 个结论

图4/4

从 1956 年以来出现的“AI 之父”

Amy 将 ImageNet 语料库作为例子。这个语料库包含 1400 万张带标签的图片,其中一半以上是在美国创建的。当然,ImageNet 语料库并不是唯一一个包含偏见的数据集。

推荐阅读