图灵奖得主Bengio提出并开源图马尔科夫神经网络( 二 )
作者:Meng Qu,Yoshua Bengio,Jian Tang
Montreal Institute for Learning Algorithms (MILA), University of Montreal, Canadian Institute for Advanced Research (CIFAR), HEC Montreal
论文地址:http://proceedings.mlr.press/v97/qu19a/qu19a.pdf
GMNN用条件随机场对对象标签的联合分布进行建模,其中条件随机场能够利用变分EM(期望最大)算法进行有效训练。
在E -Step中,图神经网络能够学到有效的对象表示,该表示能够近似对象标签的后验分布。在M -Step中,另一个图神经网络用于对局部标签依赖进行建模。
在对象分类、链路分类和无监督节点表示学习上的实验表明,GMNN 取得了最好的结果。
基于条件随机场的方法有一些不足,比如
(1)这些方法通常将条件随机字段中的势函数定义为某些人工设计的特征函数的线性组合,这些函数是启发式的。而且,这种模型的表达能力比较有限。
推荐阅读
- Uzi|历届Dede奖得主哪位最实至名归?Dade还是Uzi?
- 反图灵测试|英雄联盟为什么没新玩家了?拳头野心显露,手游只是第一步!
- 二次元|奥运会硬牌得主是老二次元?比赛时还大喊游戏台词,浓度略高
- 金泰相|近九届MVP得主统计显示:Doinb大概率预定常规赛MVP!左手太可惜
- 官宣|真爱or钞能力?榜一与主播终成眷属!神豪一通狂刷博得主播欢心
- 图灵周报|羡慕!科技企业复工,手机呼叫电梯、机器人实时巡逻
- 友杰智新与图灵人工智能研究院正式签署战略合作协议
- GDDR6的GTX 1650出现,整个图灵系列将在2020年转移到GDDR6
- NVIDIA MX350笔记本显卡不再马甲了 但图灵GPU很快就来
- 诺奖得主“封神”:新显微技术看清细胞内每个细节!独家专访