图灵奖得主Bengio提出并开源图马尔科夫神经网络( 二 )

作者:Meng Qu,Yoshua Bengio,Jian Tang

Montreal Institute for Learning Algorithms (MILA), University of Montreal, Canadian Institute for Advanced Research (CIFAR), HEC Montreal

论文地址:http://proceedings.mlr.press/v97/qu19a/qu19a.pdf

GMNN用条件随机场对对象标签的联合分布进行建模,其中条件随机场能够利用变分EM(期望最大)算法进行有效训练。

在E -Step中,图神经网络能够学到有效的对象表示,该表示能够近似对象标签的后验分布。在M -Step中,另一个图神经网络用于对局部标签依赖进行建模。

在对象分类、链路分类和无监督节点表示学习上的实验表明,GMNN 取得了最好的结果。

基于条件随机场的方法有一些不足,比如

(1)这些方法通常将条件随机字段中的势函数定义为某些人工设计的特征函数的线性组合,这些函数是启发式的。而且,这种模型的表达能力比较有限。

推荐阅读