图灵奖得主Bengio提出并开源图马尔科夫神经网络( 三 )
(2)由于对象之间的关系结构比较复杂,对未标记对象的标签的后验分布进行推断仍然具有一定的挑战性。
基于图的神经网络也有一些不足,一个关键的限制即为对象的标签是根据其表示形式独立预测的,如此一来,对象标签之间的联合依赖项会被忽略。
在变分EM框架中,E-step用于推理,M-step用于学习。在学习过程中,GMNN的训练过程不是最大化似然函数,而是优化伪似然函数,并利用图神经网络对对象标签的局部条件分布进行建模。这种图神经网络能够比较好地学习对象标签的依赖性,并且不需要人工设计势函数。
在推理过程中,由于精确推理比较难解,可以利用均值场近似值来解决。
受摊销推理的启发,作者们利用另一个图神经网络对对象标签的后验分布进行建模, 进而可以学习有用的对象表示用于预测对象的标签。在推理过程中,利用图神经网络,可以显著减少参数的数量,并且在推理中的不同对象之间可以共享统计证据。
半监督对象分类的问题描述如下
推荐阅读
- Uzi|历届Dede奖得主哪位最实至名归?Dade还是Uzi?
- 反图灵测试|英雄联盟为什么没新玩家了?拳头野心显露,手游只是第一步!
- 二次元|奥运会硬牌得主是老二次元?比赛时还大喊游戏台词,浓度略高
- 金泰相|近九届MVP得主统计显示:Doinb大概率预定常规赛MVP!左手太可惜
- 官宣|真爱or钞能力?榜一与主播终成眷属!神豪一通狂刷博得主播欢心
- 图灵周报|羡慕!科技企业复工,手机呼叫电梯、机器人实时巡逻
- 友杰智新与图灵人工智能研究院正式签署战略合作协议
- GDDR6的GTX 1650出现,整个图灵系列将在2020年转移到GDDR6
- NVIDIA MX350笔记本显卡不再马甲了 但图灵GPU很快就来
- 诺奖得主“封神”:新显微技术看清细胞内每个细节!独家专访