【DTF预告】是谁扼住了AI的咽喉?( 四 )

03 AI数据科学家才力释放

在中国,数据科学家数量缺乏,经验积累滞后,帮助企业实现数据到业务价值更为耗时耗力。而提高运算能力,建立端对端的服务和平台,可以释放数据科学家的时间和精力。

通过优化硬件和软件堆栈,AI模型和框架库中的设置可以配置到其他环境以简化流程,加速建模后的机器学习和深度学习,缩短解决方案构建时间,从而提高数据科学家工作效率以加速企业的AI计划发展。

【DTF预告】是谁扼住了AI的咽喉?

同时,随着智能化发展,各种规模的企业也面临着计算能力上的挑战。

初创和中小型企业的算力挑战

【DTF预告】是谁扼住了AI的咽喉?

在早期,这些初创或中小企业可能部署了基于云的人工智能服务来满足需求,但随着其向本地或混合IT环境的迁移,如何针对任何给定位置的数据量,通过迁移和驱动人工智能算法和计算,实现计算性能加速、算力增强,从而最大限度降低成本和数据移动以提高生产效率,是突破AI计算瓶颈的关键。

推荐阅读