深圳交响乐团音乐总监叶大林:期待未来5—10年AI创作出交响乐传世作品( 三 )

同时,创作团队依据经典作曲理论进行标签内容的设定,打造了海量维度的音乐标签体系,包含情绪、风格、主题、发展手法、和声、曲式、对位、配器、调性、调式、拍号等各类音乐元素。值得注意的是,平安还在基于人工精选数据集开发了自动标注分析系统,尝试应用AI技术对音乐音频进行自动分析。

在模型运用层面,AI交响变奏曲《我和我的祖国》运用了平安首创的AVM自动变奏模型。首先在节奏、和声、织体、配器等方面构建专家变奏规则库进行基础模型的训练。而后采用深度学习和强化学习联合方案,根据音乐创作理论描述规则进行基础模型训练,利用深度学习技术对音乐作品实现多维度的特征学习与提取,再结合强化学习技术让机器初步掌握人类作曲的思考逻辑,学习乐曲变奏手法。

对机器进行深度学习和强化学习训练的还有音乐评价模型,即基于大量作曲家的作品学习所构建的评价网络。众所周知,乐曲是否悦耳的评价标准相对主观,然而作曲规则却在音乐发展中逐步确立,形成了相对客观的行业标准。因此,乐曲创造的过程中,需要在遵守主流审美这一选取最佳音乐片段原则的同时,兼顾作曲专家的评价标准。同时,为防止AI作曲生成过于自由,平安在人工智能乐曲创作的过程中融入了包含和声约束、对位约束、曲式结构约束等规则在内专家规则,让AI作曲无限靠近乐曲原本体裁,并具备时代传承的经典性。

推荐阅读