同时在线|思考:数据分析与数据后台设计( 三 )
此时我们监控同时在线人数就能为这个观点提供一定的支持。所以观察数据是建立在监控数据的基础之上。从观察数据的过程中,我们得出了一些观点从而找到执行策略的思路以及依据就是这个过程最大的意义。
观察数据需要较长时间的数据、较多的数据指标进行综合对比、评估方能针对一个问题得出合理的观点。
指标数值的变化之所以能反应问题,是因为这个指标是目标问题具有显著性影响的因素。很多的问题分析时,是需要确认多个因素的影响能力方能得出问题结论,所以观察数据时对于数据的要求也更高,观察时数据当满足以下几个要求时可为观察过程提供足够的支持:
- 数据粒度以日为主,时间区间长;
- 数据指标多维度、多角度;
- 数据主要以表格体现,图片为辅。
数据指标多维度多角度更多体现在需要足够数量的核心指标帮助观察数据时进行对比。由于前两点的要求,此时可视化的图相比监控数据过程重要性降低,此时数据表格可以更加便利的展示数据,当然表格+图是更好的选择。
同样举两个例子。

文章插图
上图是友盟机型分析的示例图,其中提供了新增用户与启动次数两个核心指标,用以分析不同机型的新用户在游戏中的表现,进而分析不同机型用户的质量。这是一类以聚焦日粒度为主亦可跨日分析的多指标数据。

文章插图
上图是友盟整体趋势的示例图,其中提供了多个体现用户数量、留存率、时长、启动次数等与用户行为直接相关的指标帮助分析者观察数据。
与上一个例子不同点在于,虽然都是多指标观察,但是这个例子是聚焦于跨时间对比分析的数据,因为活跃、新增用户数作为一个数值容易受推广、活动、节假日等因素直接影响,此时不同日期的数值对比意义并不大,这时候加上留存、时长等综合型的指标,通过不同时间的综合对比观察,就可以更加便捷且客观地得出观点。
以上两个例子分别代表了聚焦于某天内多个影响因素以及聚焦于长时间多个影响因素的观察行为,对于不同的观察数据行为,在数据的呈现以及表现上也有不同。
观察的关键则在于让我知道,问题是什么。
三、分析最后到了分析数据环节。
我并没有讲分析数据的方法或者工具的打算,本文的目的依然是分享一些我的数据分析思路以及根据思路而衍生的数据后台设计经验,通过思路可以帮助大家思考找到解决问题的方向与启发。所以在分析数据这个环节依然谈的还是从监控到观察最后到分析这个过程的一些看法。
当我们观察数据以后,此时脑海中已经收获了不少的信息,将这些信息进行整合根据目标进行思考的过程我称之为分析。
分析的目的与意义在于发现问题或者是验证结论,这是两件事。如果目标是发现问题,那么从众多的数据指标中、从多维度多角度的数据中发现问题,是一个主动且存在未知性的行为。而如果目标是验证结论,那么问题是清晰的,我们需要的是从数据中找到证据,这是一个相对被动且已知的行为。
当问题已知的情况下,不论是找到问题的影响因素还是已知影响因素来确认对问题的影响,都已经有了非常明确的目标,此时分析数据的意义就是找到支撑问题解决方法的依据或是解决方法的思路。
推荐阅读
- 考试|行业观察丨在线学习、远程考试成新趋势,信息安全需重视
- 腾讯|钉钉领跑、企微爆发、飞书急追,在线办公"三国杀"升温
- 中国电信|中国电信推出天翼空中上网产品:支持在线音视频等
- 工业区|搭平台“找朋友”,让企业间擦火花嘉定全流程服务在线新经济企业
- 广告|深度|互联网广告的葬礼
- 电商|研究120个抖音做新品牌的公司,我总结出对电商的8条思考
- 东莞纪实其貌不扬的电工,同时交往7个女孩,电子厂黄金时代
- 吴洁|年轻人躲进在线文档
- 运营|入行半年,我对运营的思考和总结
- 阿里云|西安一码通“崩溃”调查:一场系统性失灵的数字政府再思考|钛媒体深度