激光粉末床熔接多材料结构增材制造的最新进展(1)

文章图片

文章图片

文章图片

文章图片

文章图片

长三角G60激光联盟导读
据悉 , 本文从界面特性和强化方法、关键技术问题和潜在应用等方面全面回顾了通过LPBF实现的多材料结构的最新成就 。 本文为第一部分 。
摘要
激光粉末床熔合(LPBF)加性制造在制造具有复杂结构和精细材料布局的金属多材料结构方面取得了进展 。 本文从界面特性和强化方法、关键技术问题和潜在应用等方面全面回顾了通过LPBF实现的多材料结构的最新成就 。 首先介绍了多材料结构和审查范围 。 然后介绍了多材料结构的界面特征(包括LPBF打印的代表性多材料类型、界面微观结构、缺陷等)和强化方法 。 随后 , 从设备开发、数据准备、热力学计算和过程模拟以及粉末交叉污染和回收等方面讨论了多材料结构LPBF的关键技术问题 。 此外 , 还对其潜在应用(特别是在生物医学、电子和航空航天领域)进行了说明和讨论 。 最后 , 展望了未来的研究方向 。
1.介绍
多材料零件由零件内物理分布的多种材料组成 , 可以集成各种材料的结构和功能 , 以在零件的预定位置实现可定制的性能(局部耐磨性、高导热性、隔热性、耐化学腐蚀性等) 。 多个材料在一个零件中的特定分布可以实现比单个材料零件更好的性能 。 特别是 , 一些产品在需要多功能和多环境适应性的恶劣工作条件下使用 。 例如 , IN718/316L多材料结构可以实现高耐热性和高温抗氧化性 , 以及足够的低温机械强度和韧性 , 因此在航空航天领域具有巨大潜力;NiTi/Ti6Al4?V多材料结构可能适用于生物医学骨科植入物 , 具有个性化、与人体骨骼相当的刚度以及优异的耐磨性和耐腐蚀性 。 因此 , 多材料结构可以为采用创新结构和多材料布局的最终用途零件的整体制造铺平道路 , 并满足航空航天、生物医学、汽车和模具行业日益增长的需求 。
标准L-PBF系统的示意图 。
使用传统的制造技术 , 如粉末冶金、轧制、焊接、化学气相沉积和扩散连接 , 很难制造具有复杂几何形状和不同材料类型或成分可控分布的多材料结构 。 增材制造(AM)可以基于逐层原理提供高设计自由度和制造复杂零件的灵活性 , 能够精确控制材料的空间分布 , 因此在多材料结构的设计和制造中具有很大的潜力 。 与传统制造技术相比 , 多材料加工技术为几何形状复杂的多材料零件的制造提供了一种更加可靠的方法 , 降低了制造成本 。 特别是 , 这一过程引入了更高层次的设计自由 , 能够控制复杂的三维空间内材料分布的方向性和多样性 。 因此 , 多材料AM可以实现“在正确的位置打印正确的材料”和“为独特的功能打印独特的结构” 。
金属多材料结构的典型AM技术是激光粉末床聚变(LPBF)和激光定向能量沉积(L-DED) 。 LPBF是AM家族的关键成员 , 它使用高能强度激光束在粉末床上选择性熔化金属粉末 。 与L-DED工艺相比 , LPBF工艺由于其较小的激光光斑和较薄的层厚度 , 可以制造具有更复杂和更精细结构的多材料结构 。 该工艺已越来越多地应用于制造尺寸误差小于100μm的复杂多材料结构 , 在热交换器、电气设备、HIP植入物、珠宝、燃烧室、耐磨部件、刀具等制造方面显示出巨大潜力 。 LPBF打印多材料结构的机械性能(拉伸强度、弯曲强度等)取决于界面结合 , 界面结合由界面处的微观结构和缺陷决定 。 孔隙和裂纹等缺陷会削弱多材料结构的结合强度 , 而界面处细化的微观结构会增强界面结合 。
(a)曼彻斯特大学开发的多材料L-BPF技术的工艺流程 , (b)相关的实验装置示意图 , (c1)-(c3)L-PBF处理的316 L-Cu10Sn样品 , (d1)316 L-Cu 10Sn FGM涡轮盘样品和(d2)埃菲尔铁塔样品 , (e)Cu10Sn玻璃挂件样品 , (f)Cu10Sn PA11样品 。
推荐阅读
- 用于揭示激光-材料相互作用动力学的超快成像
- 男子醉酒后去养生馆休息,同时点俩女技师,趴床上让俩人一起照顾
- 俄罗斯建造能干扰卫星的地基激光设施背后,是科技之争的升级
- 纪实:男子高价娶空姐,婚前发现床上有白色水渍,看完监控发现真相
- 医院病房里,儿媳躺在病床上呼呼大睡,公公只好坐在凳子上输液
- 先进材料的激光定向能量沉积(2)
- 老人家具店蹭空调不走,老板无奈开制热30度,网友:躺床上过分了
- 因为一套房,老人搬床睡楼道,屋里的人坚持7个月不出门
- 2019年,两男一女同床共枕酿成惨案,妻子:丈夫值夜班,让男同事睡我
- 回顾东莞女子参加聚会喝醉,31岁邻居送她回家,趁丈夫外出爬上床