从声音中挖掘商机,企业正试图用算法听懂你( 五 )

在Degani分享的一个案例研究中,Voicesense与一家大型欧洲银行合作对其技术进行了测试。银行向Voicesense提供了几千名债务人的语音样本(银行已知道谁拖欠了贷款,谁没有拖欠)。Voicesense在这些样本中运算其算法,并把录音分为低风险、中风险和高风险三类。在此项分析中,预测为低风险组中仅有6%违约,而预测为高风险组中有27%违约。在另一项考察临时员工离职可能性的评估研究中,算法归为低风险类中仅有13%离职,而高风险组有高达39%的员工离职。

当算法算错会发生什么?

麻省理工科学家Ghosh表示这些都是合理的应用,于他而言没有什么是危险的。但与任何预测性技术一样,如果分析做的不好,就很容易过度概括。一般来说,除非看到有证据表明某件事在很多人身上以及这一类人群上得到了验证,否则很难将某人的说法认为是理所当然。除非采样足够多,否则声音的特征会有相当大的差异,这也是为什么该公司不会做出强烈声明的原因。

CEO Degani还表示Voicesense的语音处理算法每秒可测量200多个参数,而且在很多不同语言上包括像普通话这样的声调语言都能测量准确。目前该公司的项目还处于试点阶段,但该公司与很多大型银行及投资者都保持着联系。他还提到,每个人都被这项技术所吸引。

推荐阅读