“人工智能的数理基础”主题论坛,他们从数学角度解决AI问题( 七 )

从1995年到2005年的十年,是统计机器学习黄金发展的十年。我们看到的应用领域,比如计算机识别、语音识别,他们的核心方法是统计方法。

统计学习是统计建模和算法计算的结合。神经网络在这个时期表现的并不是很好,处于低落阶段。

但当统计学习发展到一定阶段,人们发现数据到表示这件事情还是无法绕过。研究人员就顺其自然地想要让机器通过学习,也就是通过一个自动化的方式去解决表示问题。

所以机器学习进入了第三个阶段即基于深度表示的学习。在这个时期,大模型+大数据+大计算使得这个思路变得可行。

张志华认为机器学习的关键在于表示学习,表示需要适合预测和适合计算。深度表示目前遇到的挑战在于,由于大数据的需要可能导致过参数化,并且由于多层的表示,导致问题高度非凸化。

机器学习的基础原则是可预测性、可计算性以及稳定性。

张教授也介绍了机器学习的关键技术思路:深度表示、规范技术、平均化技术。其中,规范技术用来处理过拟合、病态、非稳定性的问题。

推荐阅读