“人工智能的数理基础”主题论坛,他们从数学角度解决AI问题( 六 )

图6/6

机器学习是从数据中挖掘出有价值的信息。数据本身是无意识的,它不能自动呈现出有用的信息。怎样才能找出有价值的东西呢?第一步要给数据一个抽象的表示;接着基于表示进行建模;然后估计模型的参数,也就是计算。

张志华认为机器学习的第一个阶层是基于规则的学习,这个阶段的历程比较成熟,它的目的就是规则,用规则去做预测。代表的形态有专家系统和句法模式识别。

后来,研究人员慢慢发现要做到从数据到表示牵涉深入的领域背景知识。比如,自然语言处理需要生活与的语言学背景,视觉或图像则需要通过认知、神经科学等来获取表示。

研究人员也慢慢发现,基于规则去学习出现了一些问题,比如,基于规则的模型对于浅层推理有效,但没法用来进行深层次的推理。如果规则过多,要做到在规则里面进行搜索,就容易出现维数灾难的问题。

为了解决这个问题,一个简单的思路是弱化从数据到表示的环节,基于这样的理论,机器学习进入了第二个阶段,即统计推理学习。

推荐阅读