朴素贝叶斯:帮助AI产品经理“小步快跑,快速迭代”( 七 )

因此贝叶斯公式实际上阐述了这么一个事情,如下图所示:

朴素贝叶斯:帮助AI产品经理“小步快跑,快速迭代”

我们可以用文氏图可以加深对贝叶斯定理的理解,如下图所示:

朴素贝叶斯:帮助AI产品经理“小步快跑,快速迭代”

上述例子中小林刚好在早高峰时段看到同事出站,代表出现了新的信息。就像是上图中已知黑点已经落入A区域了,由于A区域大部分区域与B区域相交,因此推断黑点也在B区域的概率会变大。我们想获得的结果其实是P(B|A),即我们想知道,在考虑了一些现有的因素后,这个随机事件会以多大概率出现。

参考这个概率结果,在很多事情上我们可以有针对性地作出决策。我们需要同时知道P(B)、P(A|B)与P(A)才能算出目标值P(B|A),但是P(A)的值似乎比较难求。

仔细想一想,P(A)与P(B)之间似乎没有任何关联,两者本身就是独立事件,无论P(B)的值是大还是小,P(A)都是固定的分母。也就是说我们计算P(A)各种取值的可能性并不会对各结果的相对大小产生影响,因此可以忽略P(A)的取值。

推荐阅读