朴素贝叶斯:帮助AI产品经理“小步快跑,快速迭代”( 八 )

假设P(A)的取值为m,P(B)的可能取值为b1、b2或者是b3,已知:

朴素贝叶斯:帮助AI产品经理“小步快跑,快速迭代”

那么计算P(B|A)时,分别会得到结果:

朴素贝叶斯:帮助AI产品经理“小步快跑,快速迭代”

且由于P(b1|A)、P(b2|A)与P(b3|A)三者之和一定为1,因此可以得出ox+py+qz=m。即使m的值不知道也没关系,因为ox,py,qz的值都是可以计算出来的,m自然也就知道了。剩下的工作就是计算P(B)、P(A|B),而这两个概率必须要通过我们手上有的数据集来进行估计。

关于贝叶斯算法有一段小插曲。贝叶斯算法被发明后,曾有接近200年的时间无人问津。

因为经典统计学在当时完全能够解决客观上能够解释的简单概率问题;而且相比需要靠主观判断的贝叶斯算法,显然当时的人们更愿意接受建立在客观事实上的经典统计学,他们更愿意接受一个硬币无论抛多少次后正反面朝上的概率都是50%的事实。

推荐阅读