21 个必须知道的机器学习开源工具!( 三 )

另一方面,你可以考虑一些开箱即用的付费服务,例如Google AutoML、Azure Studio、Deep Cognition和Data Robot。

用于模型部署的开源机器学习工具

部署机器学习模型是最容易被忽视但重要的任务之一,它几乎肯定会在采访中出现,所以你可能也很熟悉这个话题。

以下是一些框架,可以更轻松地将你的项目部署到现实世界的设备中。

MLFlow:MLFlow被设计用于使用任何机器学习库或算法,并管理整个生命周期,包括实验、重现性和机器学习模型的部署。

21 个必须知道的机器学习开源工具!

Apple的CoreML:CoreML是一个流行的框架,它可用于将机器学习模型集成到你的iOS / Apple Watch / Apple TV / MacOS应用程序中。关于CoreML的最好的部分是你不需要有关神经网络或机器学习的广泛知识,双赢!

21 个必须知道的机器学习开源工具!

推荐阅读