21 个必须知道的机器学习开源工具!( 五 )

Spark:Apache Spark被认为是Hadoop用于大数据应用程序的自然继承者。这个开源大数据工具的关键点在于它填补了Apache Hadoop在数据处理方面的空白。有趣的是,Spark可以处理批量数据和实时数据。Neo4j:对于所有与数据相关的大问题,Hadoop可能不是明智的选择。例如,当你需要处理大量网络数据或图形相关问题(如社交网络或人口统计模式)时,图形数据库可能是最佳选择。

21 个必须知道的机器学习开源工具!

用于计算机视觉,NLP和音频的开源机器学习工具

“如果我们想要机器思考,我们需要教他们看。”——Fei-Fei Li博士的计算机视觉。

SimpleCV:如果你从事任何计算机视觉项目,必须使用OpenCV。但你有遇到过SimpleCV吗?SimpleCV可以访问几个高性能的计算机视觉库,如OpenCV——无需首先了解位深度、文件格式、色彩空间、缓冲区管理、特征值或矩阵与位图存储,这使计算机视觉变得简单。

21 个必须知道的机器学习开源工具!

推荐阅读