AlphaGo之父:是天才,也是生活里的普通人( 十 )

他经常以深入浅出的方式向大众介绍自己复杂的工作以及这些工作有何重要意义。他娓娓道来地去分解描述DeepMind是如何把传统AI技术和新技术进行结合的,比如在围棋上,DeepMind结合了传统“树搜索”的方法和模拟大脑神经元的“深度神经网络”,并巧妙地融合了多种不同的AI技术。

他曾在做客BBC时讲到,在AI领域深度学习和强化学习是最让他兴奋的两件事,前者用于识别,后者用于决策,AlphaGo就是两者结合的产物。DeepMind将采用处理长期规划的更深层次的强化学习技术引入AlphaGo中,而不是简单地采用预编程系统按既定步骤下棋。

依靠增强学习系统,AlphaGo可以汲取人类棋手比赛的营养,然后开创自己的打法。未来DeepMind还将整合记忆等其他功能,“将所有这些不同领域整合在一起是关键。因为我们感兴趣的算法能够将针对某一领域的学习经验应用至新的领域”。

新技术的引进使得AlphaGo Zero能力卓越,与同类程序对弈胜率高达99.8%。能够达成这样的结果除了新技术的原因,还源于哈萨比斯对“智力(Mind)”的认知,“AlphaGo以人类的方式去下棋。它也是按照人类的方式去学习的,像你和我一样,在不断练习中技能得以提高”。

推荐阅读