滴滴KDD 2019 论文详解:基于深度学习自动生成客服对话( 三 )

本文主要研究如何利用深度学习方法,自动化的生成工单摘要,提高客服工作效率,进而节约客服资源。

问题挑战

相对于一般的文本摘要问题,客服工单摘要有其特殊性。我们需要保证工单摘要满足以下三个条件:

完整性:即工单摘要需要包括所有的要点;一般情况下,摘要至少要包括用户问题描述、解决方案、用户反馈这几个要点。在一些场景下,还需要包括用户联系方式、反馈时效等要点。逻辑性:即工单摘要中的要点需要按正确的逻辑顺序组织起来。工单摘要应该先记录用户问题,再记录解决方案,最后记录用户反馈以及后续跟进策略等。顺序不正确会导致摘要难以让人理解。正确性:即工单摘要中的核心要点需要保证是正确的,例如用户反馈部分中的”认可解决方案”与“不认可解决方案“。由于两者从文本相似度很高,利用End-to-End方案学习效果通常比较差。目前的抽取式和生成式的文本摘要方案均不能很好的解决这些问题;针对以上挑战我们提出了自己的解决方案。

解决方案

我们提出利用辅助要点序列(Auxiliary keypoint sequence)来解决以上这些挑战。要点(key point)是工单摘要中一个片段的主题,例如“问题描述”。我们通过人工总结工单摘要,整理得到滴滴场景下51个要点;详见表1

推荐阅读