阿尔茨海默病:真正的凶手找到了?( 七 )

要保持神经元间实现流畅的通讯,一个神经元需要频繁地向下一级神经元传递神经信号。要实现这一点,每一次神经信号被传递给下一级神经元之后,被释放出的谷氨酸就需要尽快被清理掉,否则下一级神经元就会一直处于活化的状态,后续的神经信号也就难以被正常地传导。另一方面,在上下两级神经元的“手”之间的间隙中,如果谷氨酸长期保持在较高的浓度,还会对神经元产生毒性。

神经系统使用了一种巧妙的方法来解决这个问题。这种方法不仅能够很快清理掉释放出的谷氨酸,而且还能使神经系统以一种更加“经济”的方式运转。在神经元以及突触周围的另外一类细胞(神经胶质细胞)的细胞膜上,有一类被称为谷氨酸转运体的分子。这些转运体就像回收站的工人一样,能够把释放到细胞外的谷氨酸回收到细胞内,加以循环利用。这样,谷氨酸转运体的存在就起到了一石三鸟的作用:为后续的神经信号传递做好准备、避免对神经元产生神经毒性,以及通过循环利用来降低神经系统的消耗。

既然谷氨酸的回收出了问题,就可能导致两个神经元间突触处的谷氨酸异常累积,而谷氨酸又能使神经元的活性升高,那么有没有可能Aβ二聚体导致的神经元过度活跃正是谷氨酸的回收出了问题导致的呢?研究人员对这个问题进行了验证。一方面,他们发现,如果使用能够阻断谷氨酸转运体的药物阻断其功能,正常小鼠脑中的海马神经元也会变得过度活跃。可是另一方面,如果使用脑中有大量Aβ二聚体但暂时没有不溶性的Aβ沉积(因为处于患病的早期阶段)的阿尔茨海默病小鼠来进行实验,当向其脑中加入谷氨酸转运体的阻断剂时,海马神经元的活跃程度并不会进一步地增强。这说明在提高海马神经元活跃程度这一点上,谷氨酸转运体阻断剂产生的影响和Aβ二聚体产生的影响很可能是位于同一条通路(或者说同一个事件链条)上的,因为如果两者是以相对独立的方式产生影响的话,应该会产生叠加的效果。

推荐阅读