偏见性|在我地盘这儿,算法得听我的( 四 )


我们可以尝试在特定的领域,通过与区块链等技术的结合,实现完全由个人来管理自己的个人信息的授权,让个人能够追溯和查看个人信息每一次的调用记录。
也希望能有一天,社会也能够像为知识付费一样,为获取个人的数据而付费。
2. 算法To B的时代来临近些年,伴随着数据技术和移动互联网的发展,面向C端用户的各类互联网产品能够收集和获取到海量的用户使用数据。
在个人信息没有被重视和保护之前,能获取到的数据几乎就等同于可以进行分析的数据,面向C端用户的各类算法得到了迅速的发展,已经可以实现“千人千面”的用户画像。
算法离不开数据,随着民众个人信息安全意识的提高以及国家对于个人信息的保护的加强,个人信息不再可以未经授权的随意使用,面向C端用户的算法应用场景也会越来越受限制。
但算法远远不止推荐算法这一类,在供应链管理、质量控制、辅助决策等面向B端的应用场景中,算法能够极大地帮助企业用户提升生产和运营效率。
而且随着越来越多的企业向数字化转型,企业也能够积累越来越多高质量的生产运营数据,企业对自身生产运营数据的处理和分析不会像用户数据一样受到限制,企业也希望能够有更多的算法来让这些数据产生价值,我们或许将会迎来一个算法To B的大时代。
3. 可解释性>算法结果AlphaGo战胜李世石之后,人们都惊叹于AlphaGo在第二场第37手的神来之笔,惊叹人工智能和算法已经可以自己学习并超越人类。
此后,人们遵循着“有足够的数据和足够好的算法就可以训练出和AlphaGo一样的人工智能”的逻辑在人类生活的各个领域不断进行着类似的尝试,而从AlphaGo到今天,似乎也没有出现比AlphaGo更为轰动的人工智能。
AlphaGo之所以能够轰动世界,不是因为那一步从来没有人能够想到过的棋,而是人们能够一致地理解和解释这一步棋的精妙。
围棋是人类发明的游戏,人们能够完整地整理出围棋的所有规则,而且这些规则是所有人都统一的。
在很多很多的领域,人类的探索可能都还没有揭开最表面的那层面纱,对于同一个问题人类社会都没有一个统一一致的规则和答案。
对这类问题,算法的得出结果的过程可以被人们所解释往往比结果本身更为重要。
算法可以被解释,意味着人们可以进一步分析朝什么样的方向可以优化算法,人们也可以知道在何种情况下参考算法给出的结果。
就如购物平台的商品推荐,我个人基本上想要买什么东西,搜索之后就很快下单了。而推荐算法可能比较依赖于我的搜索记录,结果推荐给我的大都是我已经买过的商品。
如果我能够看到并且调整推荐的算法,可能我会将搜索记录的权重调整得更低一些。
或许将来在推荐栏里看到了一袋大米,能够同时看到“距您上次购买大米已经一个月了,您可能需要再次购买一袋”的推荐理由,这样类似沟通交流形式的推荐更容易让我接受也更有帮助。
又或许在2012年,塔吉特超市推荐婴儿用品的优惠券时,能够说明推荐的理由,那位父亲也就不会那么气愤地去投诉超市了。
作者:吴之猫,健康管理小硕,医疗健康产品汪+文艺猫。微信公众号:有不知
本文由@吴之猫 原创发布于人人都是产品经理,未经许可,禁止转载。
本文为人人都是产品经理《原创激励计划》出品。
题图来自 Unsplash,基于 CC0 协议

推荐阅读