机器人4.0时代来临!四大核心技术助推大规模商用部署(11)

另一方面,完成感知和理解的 AI 算法也非常复杂。机器人所使用的 AI 算法通常需要很强的算力,例如 Faster RCNN 算法在 GPU 上可以达到 5fps 的处理能力,但是 GPU 的功耗达到200W 以上,机器人本体很难承受,从计算成本而言同样也非常昂贵。 虽然机器人本体计算平台的计算能力仍在不断提高,但是相对于 AI 算法的需求依然有限。 为了完成机器人的计算需求,需要在云和边缘侧提供算力的支持,以实现在大规模机器人应用场景下,更有效、 更经济的计算力部署。

随着 5G 和边缘计算的部署, 机器人端到基站的延迟可以达到毫秒级,使得 5G 的网络边缘可以很好地支持机器人的实时应用。同时,边缘服务器可以在网络的边缘、很靠近机器人的地方处理机器人产生的数据,减少对于云端处理的依赖,构成一个高效的数据处理架构。

云–边–端一体的机器人系统是面向大规模机器人的服务平台,信息的处理和知识的生成与应用同样需要在云–边–端上分布处理协同完成。 例如, 汇集来自所有连接机器人的视觉、语音和环境信息, 加以分析或重构后, 被所有连接的机器人所应用。

因此,在通常情况下,云侧可以提供高性能的计算以及通用知识的存储,边缘侧可以更有效的处理数据,提供算力支持, 并在边缘范围内实现协同和共享,机器人终端完成实时的操作和处理等基本机器人的功能。然而由于机器人的业务需求多种多样,协同计算的部署也不是一成不变的,机器人 4.0 系统还要支持动态的任务迁移机制,合理的根据业务需求将不同的任务迁移到云–边–端,实现云–边–端的无缝协同计算。

推荐阅读