机器人4.0时代来临!四大核心技术助推大规模商用部署(15)

具体来说,知识图谱的信息是从感知中获取的,通过基础的感知,加上场景理解,获得的信息可以存入知识图谱,然后这些知识可以进一步进行模式的挖掘(比如时间空间相关的模式) 来获得更高层的知识。 知识图谱的一些知识又可以作为环境上下文信息提供给感知算法来进行连续学习,从而实现自适应的感知算法。从某种意义来说,这已经不是传统意义上的纯符号方法的知识图谱,而是一种混合的知识图谱,即符号方法和统计方法结合的知识图谱。这也是未来很有潜力取得突破的一个方向。

由于云–边–端融合的需要,知识图谱会分别存放在机器人侧,边缘侧和云侧,其接口可以采用统一的接口以利于系统对知识图谱进行统一的调用。由于协同学习和实时处理的需要,知识和其他相关信息(如数据,模型等) 还可以通过云侧、 边缘侧来进行共享,通过一定的冗余备份来达到更高的实时性。这类似于计算机架构中的高速缓存机制(Cache), 比如部分存储在云端的知识经常被调用, 可以缓存到边缘端或机器人端提高其存取的速度。在 5G 网络下,延迟本身不是大问题, 主要考虑更充分的利用边缘端和机器人端的计算能力,达到整体资源的最优利用。

推荐阅读