机器人4.0时代来临!四大核心技术助推大规模商用部署(14)

3、 知识图谱

知识图谱在互联网和语音助手方向已经开始较为广泛的应用,尤其是百科知识图谱。 机器人也有百科知识问答类的应用场景, 对于这类的知识图谱可以直接加以应用。 但不同于通常的百科知识类的知识图谱,机器人应用的知识图谱有一些不同的需求:

1、需要动态和个性化的知识。机器人往往需要对所在的环境和人进行更深入的理解才能进行更好的服务,而且不仅仅是当前的情况, 要对过去发生的一些情况进行记录(例如要了解老人通常什么时候起床,某个物体一般放在什么位置)。 因此,机器人需要记录环境里不同时间的人和物、 发生的事件等相关信息,这些都是通用知识图谱所不能事先提供的,必须在环境里去获取。 这些动态的个性化知识能很好的对人进行个性化的服务, 例如通过对某用户的观察,机器人可以观察到该用户的一些喜好,或者一些行为模式, 这些信息可以帮助对该用户提供更好的服务。

2、 知识图谱需要和感知、 决策紧密结合,并帮助实现更高级的持续学习能力。 从人工智能发展的历史看,单一方法很难彻底解决 AI 问题,前面的介绍也提到不论符号方法还是统计方法都已经显现了瓶颈,而且目前在单一方法里都没有很好的方法解决这些瓶颈问题。按照明斯基的分析,未来需要多种方法结合的 AI 系统。从最近几年的研究进展看,这也是未来人工智能取得进一步突破的必经之路。所以不同于以往知识图谱和计算机视觉等统计方法基本是独立运作的做法,知识图谱必须和感知决策更深入、 有机的结合。

推荐阅读