机器人4.0时代来临!四大核心技术助推大规模商用部署(13)

要解决这些问题必须让机器人具有自主的持续学习能力。具体说来,机器人可以先通过少量数据去建立基本的识别能力,然后会自主的去找到更多的相关数据并进行自动标注(或通其他方式, 例如与人交互来获得标注,但要注意尽量减少对用户的打扰)。 用这些新的数据来对已有的识别模型进行重新训练以改进性能,随着这个过程不断进行,机器人可以把识别的性能不断提高。具体拿物体识别来说,机器人应该先通过少量数据来建立对该物体的基本识别能力,然后可以自己去找到不同的位置,不同的角度做训练,不断提高对这个物体的识别精度,在一段时间的持续学习后达到接近 100%,

在实际应用中,一个机器人能接触到的数据是有限的, 其持续学习的速度可能会受到限制。机器人 4.0 是一个云–边–端融合的系统,如果能够在机器人间或机器人与其他智能体间通过这个系统来共享数据、 模型、 知识库等, 就能够进行所谓的协同学习。 通过云端的模拟器来进行虚拟环境中的协同学习也是一种行之有效的方法, 可以充分利用云的大规模并行处理能力和大数据处理能力。协同学习使得机器人的持续学习能力进一步增强,可以进一步提高学习的速度和精度。

推荐阅读