工业互联网如何赋能高端制造?( 九 )

一是数据,即机器的实时数据、历史维护记录、失效记录、产品手册等;

二是机理,像FMEA、控制理论等基本的工业模型;

三是数据分析,变点检测、时序预测、聚类回归、机器学习、神经网络等结合在一起,才能产生一个相对完整的设备资产管理系统,实现实时监测、故障诊断预测、可靠性管理等一系列功能,最终目标是降低停机概率、降低运营风险、实现更快的响应能力。

怎么利用数据分析实现资产的高效性能分析呢?主要还是利用机器的数据。

基于机器的历史数据可以构建不同状态下的历史数据样本,开发各类故障的特征模型,与当前传感器数据进行对比,从而对当前的设备进行实时的健康评估。

基于历史数据也可以构建性能预测指标,通过对比指标就可以知道设备未来在什么时间可能会出问题,可以计算剩余寿命以优化维护策略。

应用场景2:运营性能管理。

在工业生产过程中有很多设备都产生数据,像工艺数据、质量数据、维护数据等,都可以通过工业互联网平台采集出来,做工艺参数优化、良率优化、虚拟量测、关键指标建模、燃烧环保优化、能源管理等一系列分析。

推荐阅读