机器人4.0时代来临!四大核心技术助推大规模商用部署(16)

4、 场景自适应

有了持续学习和知识图谱, 系统在感知方面的鲁棒性大大提高,也在场景分析方面获得了 丰富的信息并存在知识图谱中,这就使得机器人能够根据当前的场景进行相应的行动。

场景自适应技术主要通过对场景进行三维语义理解的基础上,主动观察场景里人与物的变化,并预测可能发生的事件,从而产生与场景发展相关的行动建议。 例如在养老/助老应用中老人端着一碗汤走向冰箱,机器人可以通过以往的经验或知识预测老人是要去开冰箱放东西,就可以帮老人打开冰箱。再例如,机器人看到地上有一块果皮,预测可能会导致老人摔倒,这时机器人可以主动捡起果皮(机器人配备了手臂操控的情况下) 或站到果皮边并警告老人。

这部分的关键技术是场景预测能力。场景预测就是通过对场景里的人、 物、 行为等的长期观察,并结合相关的知识和统计模型来总结出一些个人偏好或行为模式,并据此来预测目前场景要发生的事件。过去人工智能的符号方法中框架、 脚本表示在这里可以作为知识表达的形式,但更关键的是需要把符号方法和统计方法结合起来,从而解决以往单独用符号方法无法解决的问题(比如缺少学习能力)。这部分的研究还处于比较初期的阶段,但相信在基于持续学习、知识图谱等技术充分结合的基础上,该方向在未来几年会有较大的突破。 最终使得整个机器人的闭环系统, 即感知–认知–行动,变得更加智能和人性化。

推荐阅读