【工经之声】大数据技术及其行业应用:基于铁路领域的概念框架研究( 七 )

3.数据模型

数据挖掘与机器学习。数据挖掘和机器学习是大数据技术架构中模型层的重要组成部分。数据挖掘是通过算法搜索来获取大量数据中潜在有用的、有效的、最终可理解的信息的过程。机器学习是数据挖掘中的一种重要工具,目前已经成为计算机数据分析技术的创新源头之一。数据模型常用的大数据分析软件包括统计分析软件(如R软件、SAS软件、SPSS软件等)、数据库软件(如Oracle软件、SQL Server软件等)以及计算机编程软件(如Java软件、C语言等软件)。大数据的分析方法包括统计分析(如聚类、关联规则等)、在线分析处理、情报检索、机器学习,等等。

4.数据应用

大数据技术怎样服务化是一个值得研究的领域。云计算是大数据应用中不可避免的问题。目前,大数据云服务有两种经典模式:一是托管模式,这种模式的核心是通过云的能力简化了集群的创建、运维等;二是服务化模式,用户不用关心集群、资源等问题,只需将大数据任务交给大数据云即可享受相应服务。大数据应用主要在智慧城市、城市交通、医疗、金融、城市规划等各领域中,应用媒介主要是门户网站、个人事务、邮件系统等。

推荐阅读